Научно - Информационный портал



  Меню
  


Смотрите также:



 Главная   »  
страница 1 ... страница 2 | страница 3 страница 4 страница 5

Постоянные пространственные заряды и потенциалы.
В высокочастотном электрическом полеэлектроны и ионы совершают дрейфовые колебания. На хаотическое тепловое движение заряженных частиц накладывается дрейфовое в направлении электрического поля (для случая емкостного заряда – в направлении перпендикулярном электродам). Амплитуда дрейфовых колебаний электронов А в раз меньше, чем амплитуда свободных колебаний A0, т.е.:

. (1.21)

Направленная (дрейфовая) скорость и амплитуда колебаний ионов в раз меньше, чем у электронов. Для типичных условий ВЧ-разряда низкого давления это отношение имеет величину порядка 104. Поэтому, при рассмотрении колебательного движения заряженных частиц в ВЧ-разряде, можно считать ионы неподвижными. Отсюда следует, что в результате увода электронов из приэлектродной области шириной примерно А возникает слой пространственного заряда, а также стационарный положительный потенциал разрядной плазмы относительно потенциала электродов.

В ряде работ [7-10] с помощью электрических зондов определено наличие больших стационарных полей в ВЧ-разрядах низкого давления, разность потенциалов между плазмой и электродами V0 достигала нескольких сот вольт (порядка величины прикладываемого напряжения). Была сделана попытка [10] объяснить возникновение большого значения V0, которое не может быть обусловлено амбиполярной диффузией и плавающим ленгмюровским потенциалом. Выдвинуто предположение, согласно которому большой значение величины V0 имеет место вследствие уменьшения концентрации электронов в приэлектродных областях толщиною А и поглощения их электродами, что не компенсировалось медленной диффузией электронов из центральных областей разряда. Полученное же [10] теоретическое V0 не соответствовало экспериментальным данным [9, 10]. Ошибка состояла в пренебрежении тепловым движением электронов и реальными граничными условиями в газоразрядной плазме [11].

Направленная (дрейфовая ) скорость электронов в плазме ВЧ-разряда подчас много меньше тепловой и поэтому масштаб разделения зарядов на границе плазмы  будет определяться не амплитудой колебаний электронов А, а длиной поляризации плазмы в электрическом поле. Для малых разностей потенциалов в области пространственного заряда V<e (Ve – температура электронов, выраженная в единицах потенциала) величина  будет, очевидно, равна дебаевскому радиусу D:



. (1.22)

При V>>Ve [12]:



. (1.23)

Таким образом, с развитием ВЧ-разряда в результате увода электронов ВЧ-полем или их ухода на электроды вследствие наличия значительных тепловых скоростей возникает двойной электрический приэлектродный слой. Образование этого слоя является причиной появления большого потенциала V0, что происходит в результате выпрямления ВЧ напряжения на нелинейной комплексной проводимости приэлектродного слоя пространственного заряда [11]. Авторы работы [11] получили теоретические выражения для разности потенциалов плазмы и электрода в симметричном Е-разряде V0, когда площади электродов равны, и для несимметричного разряда (V0/), когда площадь одного электрода много больше другого. Вот они:



, (1.24)

, (1.25)

где VВЧ – амплитуда ВЧ напряжения,  – его фаза, I0 – модифицированная функция Бесселя.

Выражение (1.25) полностью соответствует выражению для приращения плавающего потенциала одиночного ленгмюровского зонда под действием переменного напряжения большой амплитуды, полученного в работе [13]. Это соответствие легко объяснимо, так как импеданс слоя у малого электрода значительно больше импеданса у большого электрода, и, следовательно, приложенного ВЧ напряжение падает почти полностью у малого электрода.

Для ВЧ-разряда величина VВЧ много больше Ve, практически выполняется условие VВЧ>10Ve. При этом условии, как показали расчеты [11], интеграл из уравнения (1.24) в функции VВЧ/ Ve аппроксимируется выражением – . Следовательно:



, (1.26)

и при VВЧ>>Ve первым членом этого выражения можно пренебречь



. (1.27)

Для коаксиального разряда с цилиндрическими электродами радиусами R и r (R>r) [11]:



, (1.28)

при VВЧ>>Ve [14]:



, (1.29)

где .

Рассмотренные теоретические выводы находятся в согласии с известными экспериментальными данными [11, 14]. Сравнение экспериментальных результатов с теорией показало хорошее качественное и количественное соответствие (рис. 1.12 и 1.13) [14]. Небольшое превышение экспериментальных значений V0 (рис. 1.12) над теоретическими, по-видимому, объясняется диффузионным падением потенциала от центра плазмы (где помещался зонд) к ее границе, которое определяется следующим выражением [14]:

, (1.30)

где ne0 – концентрация электронов в центре плазма, nr - на ее границе.

Для коаксиального разряда (рис. 1.13) теоретическое значение V0, наоборот, несколько завышено, так как при малых значениях толщина слоя у малого электрода будет соизмерима с его радиусом, что приводит к увеличению эффективной собирающей поверхности этого электрода. В теории же эффективное значение b определяется как отношение ионных токов насыщения на электроды и поэтому в рассматриваемом эксперименте значения V0 несколько ниже теоретических.

На основании рассмотренных теоретических выводов и экспериментальных результатов можно заключить следующее: в тривиальных условиях горения ВЧ-разряда (VВЧ>>Ve) возникающий постоянный потенциал между плазмой и электродом для симметричного Е-разряда и постоянная разность потенциалов между электродами в несимметричном или коаксиальном разряде практически не зависят от частоты ВЧ поля, состава плазмообразующего газа и его давления.



Рис. 1.12. Сравнение теоретической (1) и экспериментальных зависимостей потенциала

плазмы от амплитуды ВЧ напряжения. Плазмообразующий газ – гелий, диаметр разрядной трубки – 9 мм, межэлектродное расстояние – 60 мм, давление – 65 Па, частоты ВЧ поля – 3 МГц (·-·), 6 МГц (···), 10 МГц (—) [14].

Рис. 1.13. Сравнение теоретической и экспериментальной зависимости V0/ от VВЧ для

коаксиального разряда. r = 1 мм, R = 17 мм, длина цилиндрических электродов – 220 мм, плазмообразующий газ – неон, давление – 80 Па [14].
Возникновение значительной постоянной разницы потенциалов V0 между границей плазмы и электродом имеет ряд следствий, являющихся существенными моментами в физике ВЧ-разряда низкого давления. Рассмотрим их.

1. Происходит ускорение ионов в возникшем постоянном поле до значительных энергий, что может приводить к распылению электродов [10]. На рис. 1.14 представлены функции распределения ионов по энергиям при их вылете их разряда через узкое отверстие в электроде. Как видно, основная часть ионов имеет высокие энергии достаточные для эффективного распыления электродов. В эксперименте процесс распыления электродов наблюдается в режимах, когда потенциал пространства достигает величины порядка нескольких сот вольт. Процесс распыления, как правило, сопровождается осаждением распыленного металла на стенках разрядной камеры. Интенсивность распыления в ВЧ разряде примерно такая же, как и в тлеющем разряде постоянного тока [10]. Часто распыленный металл осаждается вблизи электродов. В общем случае, геометрия напыленного осадка меняется с изменением режима разряда и может наблюдаться перераспыление образовавшегося налета. Перераспыление, очевидно, связано с изменением пространственного распределения параметров разрядной плазмы.

2. Бомбардировка электродов высокоэнергетичными ионами приводит к выбиванию электронов. Таким образом, вследствие возникновения большого потенциала пространства, весь разряд в целом представляет собой как бы комбинацию собственно ВЧ разряда и разряда на постоянном токе, где роль анода выполняет сама плазма.

Рис. 1.14. Функция распределения по энергиям ионов, выходящих из ВЧ-разряда. Плазмообразующий газ – водород, давление – 15 Па, f =


3,9 МГц. 1 – VВЧ = 1400 В, 2 – 1260 В, 3 – 1120 В, 4 – 840 В [10].

Лекция 14
Элементарные процессы в газоразрядной плазме

Взаимодействие частиц, эффективное сечение.


Типы взаимодействия частиц: кулоновские, упругие и неупругие. Ближние и дальние кулоновские взаимодействия. Траектории движения частиц.

Вероятности взаимодействия характеризуются так называемыми эффективными сечениями взаимодействия (из кинетической теории газов).

Рассмотрим (рис. 2.1) мишень с однородной плотностью  = MN неподвижных частиц, пучок взаимодействующих частиц с концентрацией n и скоростью u.

Рис. 2.1. Воображаемое сечение элементарного параллелепипеда единичной площади при взаимодействии частиц.


Число частиц испытывающих взаимодействия пропорционально плотности частиц мишени, плотности частиц самого потока и длине dx, на котором рассматривается взаимодействие

dn = nN dx = nNu dt.

Коэффициент пропорциональности  это эффективное сечение данного взаимодействия для отдельной частицы.

Вероятность взаимодействия

Pc = N/p0,

где p0 – приведенное давление (Торр).

p0 = 273 p/T,

где температура T и давление p при данных условиях. Pc – среднее число взаимодействий частицы на расстоянии 1 см при давлении 1 Торр и 0 С.

Длина свободного пробега lср

lср = 1/N = 1/ Pcp0.


Упругие взаимодействия.

Кулоновские взаимодействия и рассеяние электронов и ионов на нейтралах.

F = z1z2e2/r2, упр< кулон

Эффект слабого рассеяния электронов при малых энергиях в инертных газах, назван эффектом Рамзауэра (рис. 2.2). Он объясняется чисто квантовыми явлениями – дифракцией электронов на атомах. При больших энергиях применимо классическое рассмотрение, т.к. длина волны электронов становиться много меньше размера атомов.



Рис.2.2. Зависимость сечения рассеяния электронов на различных частицах от скорости электронов.

упр для электронов имеет характерные значения порядка 10–15 см2.
Неупругие взаимодействия.

Максимальное изменение потенциальной энергии частицы

(Eпот)max = E1m2/( m1 + m2),

где E1 – кинетическая энергия налетающей частицы. Из формулы видно, что при соударении электрона с тяжелой частицей возможен практически полный переход кинетической энергии в потенциальную, т.е. неупругие столкновения с участием электрона наиболее эффективны.


Возбуждение (тушение) атомных, ионных и молекулярных состояний.

e + Ak0(+)  An0(+) +e

Это пороговый процесс, в (Ekn) имеет величину порядка нескольких эВ.

kn  10–16 – 10–19 см2. Максимум при Eкин = (1,5  2) Ekn (рис. 2.3).



Рис.2.3. Типичный вид зависимости сечения возбуждения атомов электронным ударом от энергии электронов.

Возбуждение (тушение) молекулярных состояний:

e + Mk,i,j0(+)  Mk,i,j0(+) +e

Энергетические зазоры между колебательными уровнями 10–2 – 1 эВ, между вращательными уровнями 10–3 – 10–1 эВ. Поэтому медленные электроны эффективно теряют энергию на возбуждение этих уровней.

Для N2 сечение возбуждения колебательных уровней (0,5  3) 10–16 см2.


Диссоциация молекул.

e + M  A +B + e

Вероятность прямого разбиения молекулы из основного состояния мала. Причина – кратковременность воздействия, в течение которого атомы (или радикалы) не успевают получить необходимого для разлета количества движения.

Диссоциация молекул часто преимущественно идет ступенчато через электронно-колебательные, электронные и колебательные возбужденные состояния с достаточным временем жизни:

e + M  M + e

e + M  A + B + e

Обратный процесс – ассоциация.

Зависимость сечения диссоциации молекул электронным ударом от энергии электронов имеет разный вид для различных молекул (рис. 2.4).



Рис.2.4. Зависимости сечения диссоциации молекул электронным ударом от энергии электронов.

Ионизация атомов и молекул.

e + Ak  Ai+ + e + e

Обратный процесс – тройная рекомбинация.

Из основного (k = 1) состояния потенциал ионизации Eи для разных частиц находится в интервале 4 – 25 эВ. Максимум 1 достигается при Eкин = (3  5)Eи, ход зависимости 1(Eкин) для разных атомов и молекул имеет одинаковый вид (рис. 2.5), соответствует аппроксимации Фабри–Канта.



Рис.2.5. Зависимости сечения ионизации атомов и молекул прямым электронным ударом из основного состояния от энергии электронов.


Ионизация из возбужденного состояния называется ступенчатой.

kи(Eкин) = k31(Eкин) т.е. kи  k3, k – главное квантовое число уровня.

При Te << Eи эффективна ступенчатая ионизация по сравнению с прямой.

Частота ионизации и (характеризует скорость рождения зарядов) т.е. число актов ионизации в 1 см3 в 1 с производимое электроном для газового разряда и = (5 102 – 103) Гц.

и = na = nakи.

- усредненное по энергетическому спектру. Коэффициент kи – называют константой (или коэффициентом) скорости ионизации, смысл kи следует из выражения:

(dne/dt)и = kиnena.

Аналогичные выражения можно записать для процессов возбуждения и диссоциации. Коэффициент скорости процессов возбуждения, ионизации и диссоциации электронным ударом можно определить так:

,

где A – некоторая постоянная, m – масса электрона,  – его энергия, () – сечение процесса, 0 – энергия верхнего уровня при возбуждении или пороговая энергия при ионизации и диссоциации, f() – функция распределения электронов по энергиям.

Для молекул не редко более эффективно проходит диссоциативная ионизация

e + M  A+ + B + e + e,

например e + CF4  CF3+ + F + e + e,

Рекомбинация с участием электронов.

Процесс обратный ионизации электронным ударом называется тройной рекомбинацией:

A+ + e + e  A + e

М+ + e + e  М + e.

Избыточная энергия передается второму электрону или тяжелой частице (в этом случае рекомбинацию называют трехчастичной). Процесс происходит ступенчато:

- захват электрона на далекую орбиту

- переход на нижележащий уровень в результате столкновения с электроном, тяжелой частицей или излучения кванта света.

Трехчастичная рекомбинация может быть при участии нейтральной или ионизованной частицы (атома или молекулы):

A+ + e + B  A + B,

A+ + e + B+  A + B+.

Рекомбинация с излучением кванта света называется радиационной рекомбинацией

A+ + e  A + h,

h = eи + meue2/2.

Скорость рекомбинации равна

(dne/dt)рек = nenи.= ne2.

Коэффициент скорости рекомбинации  пропорционален концентрации третьей частицы.   10–14 – 10–8 см3/с.

Для радиационной рекомбинации коэффициент скорости имеет величину 10–14 – 10–13 см3/с.

Диссоциативная рекомбинация

(AB)+ + e  Ak + B

имеет коэффициент скорости порядка 10–8 см3/с. Здесь третья частица образуется в ходе рекомбинации. Обратный процесс называется ассоциативной ионизацией. Вероятность диссоциативной рекомбинации значительно больше, чем тройной, поэтому процесс диссоциативной рекомбинации может быть существенным источником генерации возбужденных атомов и радикалов.

Для газового разряда низкого давления рекомбинация электронов на поверхности во много раз превышает объемную рекомбинацию и определяет скорость гибли электронов.


Образование отрицательных ионов.

Образование отрицательных ионов т.е. процесс прилипания электронов к тяжелым частицам характерен для ряда атомов и молекул (в том числе щелочных металлов и галоидов): F, Cl, Br, I, Li, Na, Ka, O2, H2O, OH, O.

Основная характеристика отрицательных ионов – энергия их связи (энергия сродства) к электрону. Она численно равна энергии необходимой для разрушения иона. Типичные значения сродства E 0,1 – 3 эВ, у галоидов 3 – 5 эВ.

E = E0 – E_ + meVe2 /2.

Механизмы прилипания:

1) e + AB  A + B – диссоциативное прилипание,

1) e + A + B  A + B – трехчастичное прилипание,

1) e + A  A + h - радиационное прилипание.

Разрушаются отрицательные ионы ударами электронов и тяжелых частиц, но определяющим для газоразрядной плазмы являются процессы гибели при реакциях ассоциации:

O + O  O2 + e,

O + N  NO + e,

O2 + O2  O2 + O2 + e,

O + CO  CO2 + e,

H + H  H2 + e,

OH + O  HO2 + e,

OH + H  H2O + e,

F + F  F2 + e.

Процесс убыли отрицательных ионов называется рекомбинацией ионов.

A + B+  A + Bk

(dnи/dt)рек = (dn/dt)рек = иnnи.

и  10–6 - 10–7 см3/с, и и  уменьшаются с ростом температуры.
Неупругие столкновения тяжелых частиц.

Вероятность упругого взаимодействия значительна только если относительная скорость частиц примерно равна скорости электрона в атоме (108 см/с), что соответствует энергии тяжелых частиц в 10 – 100 кэВ, поэтому для газоразрядной плазмы низкого давления неупругие взаимодействия тяжелых частиц типа возбуждение, диссоциация и ионизация являются несущественными.


Химические реакции в плазме.

Коэффициенты скорости реакций. Реакции ассоциации (присоединения), обменные, замещения, в объеме и на поверхности. Химические реакции в плазме как вторичные процессы активации газоплазменной среды.



Лекция 15
Плазменные технологии тонких пленок

Плазмохимическое осаждение
Технология плазмохимического осаждения (ПХО) была создана как развитие технологии химического осаждения из парогазовой фазы, в первую очередь, с целью снижения температуры подложки в процессе формирования пленок. В отличие от химического осаждения из парогазовой фазы при ПХО химические реакции инициируются и стимулируются не посредством высоких температур подложки и газовой смеси, а посредством перевода этой смеси в плазменное состояние в разрядах на постоянном токе, ВЧ- и СВЧ-разрядах, которые характеризуются низкой температурой тяжелых частиц, следовательно, низкой температурой подложки (от комнатной до 400 C) и высокой температурой электронов. Снижение температуры подложки позволяет осаждать пленки на любые ранее созданные структуры и устраняет возникновение внутренних механических напряжений в пленках при последующем охлаждении пластин. Относительно высокое давление в реакционных камерах процесса ПХО (от десятков до сотен Па) не снимает присущего химическому осаждению преимущества комфорность покрытия. В связи с тем, что технология ПХО основана на химических реакциях, ее часто называют «стимулированное плазмой химическое осаждение».

Механизмы образования плазмы, применяемой в процессах ПХО, подобны механизмам плазмохимического травления. Качественное описание образования пленок при стимулированном плазмой осаждении может быть сведено к трем основным стадиям: генерации в разряде радикалов и ионов, их адсорбции на поверхности пленки, перегруппировке поверхностных адсорбированных или присоединенных атомов, включающей диффузию (миграцию) по поверхности, взаимодействие с другими адсорбированными частицами и образование новых связей. Диффузия адсорбированного атома по поверхности к стабильному положению представляет собой важную стадию роста пленки. Одновременно с образованием пленки должна происходить и десорбция продуктов реакции с поверхности. Скорости десорбции и диффузии сильно зависят от температуры подложки, при большей температуре получаются пленки с меньшей концентрацией захваченных продуктов реакции, большей плотностью и более однородным составом. Кроме этого процессы десорбции могут стимулироваться ионной, электронной и фотонной бомбардировкой. Активация процессов формирования и роста пленки бомбардировкой подложки ионами, электронами, возбужденными частицами и фотонами позволяет путем управления потоками и энергией активирующих частиц расширить возможности управления свойствами пленок и контакта пленка – подложка. Дополнительное достоинство активации плазмой химических реакций состоит в значительном увеличении скорости осаждения и создания пленок уникального состава. ПХО позволяет получать пленки большого числа неорганических и органических соединений. Технология СБИС ПХО нашла применение для формирования пленок переходных металлов и их силицидов, а также нитрида и двуокиси кремния.

Поскольку в реакторах с тлеющим разрядом в зависимости от применяемых газов и условий процесса может происходить как травление, так и осаждение, основные компоненты установок ПХО (за исключением конструкции электродов) подобны используемым в системах травления. Рассмотрим особенности ПХО на ряде примеров.

1. Осаждение пленок W и Mo. Чистый WF6 непригоден для использования в стимулированных плазмой процессах осаждения W из-за того, что при температуре подложки выше 90 C преобладает травление, а не осаждение слоя. Действительно, в результате соударения с электроном генерируются атомы фтора и непредельные фториды вольфрама:


e + WF6 WF6-x + xF + e. (5.10)
Если атомы фтора не удаляются из зоны реакции или не связываются какими-либо реакциями, то происходит травление вольфрама.

Введение водорода подавляет травление пленки вследствие взаимодействия водорода с фтором, которое может протекать несколькими путями. Например, атомы водорода, полученные в результате диссоциации молекул при столкновении с электронами, могут реагировать с атомами фтора следующим образом:


H + F HF. (5.11)
Молекулярный водород может связывать атомы фтора:
H2 + F HF + H. (5.12)
Наконец, водород может переводить WF6 и его непредельные фториды, находящиеся в газовой фазе или на поверхности подложки, во фториды меньшей валентности:
WFx + H WFx-1 + HF, (5.13)
где x меняется от 1 до 6. Добавление водорода позволяет использовать повышенную температуру подложки, что обеспечивает получение гладких пленок вольфрама без сквозных проколов. Однако скорость осаждения уменьшается при увеличении концентрации водорода в плазме вследствие разбавления вольфрамосодержащего реагента. В диапазоне температур 200400 С и отношении расходов H2/WF6, равном 3, скорость осаждения вольфрама подчиняется закону Аррениуса, т. е. пропорциональна exp(–1/T) и составляет 46 нм/мин.

Диссоциация WF6 с образованием атомов F создает ограничения в использовании ПХО вольфрама в технологии СБИС в тех случаях, когда осаждение W проводится на кремний или его оксид, т. е. на материал, взаимодействующий с фтором. Из этого следует, что на первых этапах ПХО (до образования первых монослоев вольфрама) может произойти заметное подтравливание в плазме участков кремния или его оксида.

Осаждаемые при ПХО пленки W обладают высокой степенью чистоты, имеют столбчатую структуру, что совпадает со структурой пленок, полученных другими методами. Образование столбчатых зерен происходит при росте пленки как на аморфной (термический оксид кремния), так и на кристаллической (сапфир) подложке. Удельное сопротивление пленок вольфрама зависит от температуры подложки и отношения H2/WF6, уменьшаясь с ростом того и другого. Это связано с увеличением размера зерен при повышении температуры и уменьшением захвата фтора растущей пленкой соответственно. Однако практически для всех условий осаждения кратковременная термообработка пленок при температуре 900 С приводит к снижению удельного сопротивления пленок до 8 мкОмсм, что близко к сопротивлению массивного вольфрама.

Пленки молибдена осаждают из смеси гексафторида или пентахлорида молибдена (MoF6 или MoCl5) с водородом. Чистота пленок и, как следствие, их удельное сопротивление сильно зависят от применяемого газа. Продукты диссоциации MoF6 под действием электронов подобны получаемым из WF6.

2. Осаждение силицидов. При ПХО силициды вольфрама (WxSi1-x) осаждают из смеси WF6 и SiH4. Поскольку в разряде присутствует водород, необходимый для связывания фтора, осаждение пленки превалирует над травлением. Скорость осаждения превышает 50 нм/мин, что на порядок выше скорости осаждения вольфрама. Такое ускорение процесса при использовании разряда может быть связано с усилением зародышеобразования в присутствии кремния на поверхности пленки. Изменение отношения расходов WF6/SiH4 изменяет соотношение элементов в осаждаемой пленке от W0,04Si0,96 до W0,99Si0,01, что позволяет в широких пределах менять удельное сопротивление силицида от сопротивления, близкого к сопротивлению поликремния, до сопротивления, близкого к плазмохимическому W.

Как и в случае пленок W сопротивление пленок WxSi1-x снижается при последующих за осаждением термообработках в среде азота, что, по-видимому, связано с выделением из пленки захваченных в процессе роста водорода и фтора.

3. Осаждение нитрида кремния. С этой целью обычно используются исходные реагенты в виде силана и аммиака или азота, и реакция в обобщенном виде выглядит так:
SiH4 + NH3 (или N2) SixNyHz + H2. (5.14)
В таких процессах обычно получают пленки нестехиометрического состава (отношение x/y не равно 3/4), что может являться достоинством или недостатком в зависимости от предполагаемого применения. Стехиометрические пленки образуются при повышенных значениях мощности, температуры и отношения NH3/SiH4. Когда в качестве источника азота используется N2, то из-за его значительно меньшей скорости диссоциации по сравнению с SiH4 нужен большой избыток азота (N2/SiH4>102), чтобы избежать образования обогащенной кремнием пленки. Аммиак, напротив, может диссоциировать многоступенчато с потреблением малой энергии, что обеспечивает рост пленки активным азотом. Поэтому отношение NH3/SiH4 существенно ниже и находится в диапазоне 520. Скорость осаждения возрастает с увеличением мощности разряда и составляет 1020 нм/мин.

В пленках нитрида кремния, полученных в процессах ПХО, обнаружено большое количество водорода в виде связи Si H и N H. По этой причине в реакции нитрид кремния записан как SixNyHz. Общее количество связанного водорода изменяется в зависимости от температуры осаждения и составляет 1822 ат % в диапазоне температур 380275 С при осаждении из смеси силан аммиак. При использовании азота содержание водорода в 1,52 раза меньше. Наличие связанного водорода приводит к отличию свойств пленки от свойств осажденного из парогазовой фазы нитрида кремния, а именно, обнаружено небольшое снижение плотности, напряжения электрического пробоя и удельного сопротивления.

4. Осаждение диоксида кремния. В этом случае используются силан и закись азота или кислород:
SiH4 + 2N2O SiO2 + 2N2 + 2H2. (5.15)
В таких процессах в пленках SiO2 обнаружены связанные водород и азот – 510 ат % и 24 ат % соответственно. Отклонение от стехиометричности пленок мало (отношение концентрации O к Si не ниже 1,91). Стехиометрический состав и показатель преломления 1,46, равный его величине для термического диоксида, получены в плазме смеси силана с кислородом при низкой температуре осаждения и малой мощности разряда. Скорость осаждения диоксида кремния в процессах ПХО составляет 1540 нм/мин.



страница 1 ... страница 2 | страница 3 страница 4 страница 5

Смотрите также: